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Main result

Let E be a Banach space and let H ⊂ E be a bounded
subset of E . Then

d̂(co(H),E)≤ 2d̂(H,E),

closures are weak∗-closures taken in the bidual E ∗∗;
d̂(A,E) := sup{d(a,E) : a ∈ A} for A⊂ E ∗∗;
d̂(A,E) = 0 iff A⊂ E . Hence the inequality implies
Krein’s theorem (if H is relatively weakly compact then
co(H) is weakly compact.)

Main result

Let E be a Banach space and let H ⊂ E ∗∗ be a
bounded subset of E ∗∗. Then

d̂(co(H),E)≤ 5d̂(H,E),

Some of the constant involved are sharp.
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Convexity and w∗-compactness in Banach spaces.
Math. Ann., 328, 4 (2004), 625-631.

Main result

Let E be a Banach space and let H ⊂ E be a bounded
subset of E . Then

d̂(co(H),E)≤ 2d̂(H,E),

closures are weak∗-closures taken in the bidual E ∗∗;
d̂(A,E) := sup{d(a,E) : a ∈ A} for A⊂ E ∗∗;
d̂(A,E) = 0 iff A⊂ E . Hence the inequality implies
Krein’s theorem (if H is relatively weakly compact then
co(H) is weakly compact.)

Main result

Let E be a Banach space and let H ⊂ E ∗∗ be a
bounded subset of E ∗∗. Then

d̂(co(H),E)≤ 5d̂(H,E),

Some of the constant involved are sharp.

B. Cascales Compactness+Distances



The starting point. . . our goals
The results
References

The starting point. . . List Details
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Convexity and w∗-compactness in Banach spaces.
Math. Ann., 328, 4 (2004), 625-631.

Main result

Let E be a Banach space and let H ⊂ E be a bounded
subset of E . Then

d̂(co(H),E)≤ 2d̂(H,E),

closures are weak∗-closures taken in the bidual E ∗∗;
d̂(A,E) := sup{d(a,E) : a ∈ A} for A⊂ E ∗∗;
d̂(A,E) = 0 iff A⊂ E . Hence the inequality implies
Krein’s theorem (if H is relatively weakly compact then
co(H) is weakly compact.)

Main result

Let E be a Banach space and let H ⊂ E ∗∗ be a
bounded subset of E ∗∗. Then

d̂(co(H),E)≤ 5d̂(H,E),

Some of the constant involved are sharp.

B. Cascales Compactness+Distances



The starting point. . . our goals
The results
References

The starting point. . . List Details
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...our goal

-�

C(K)

RK

H

d̂

co(H)
τp

d̂

-�

d̂ ≤ d̂≤ 5d̂

C(X) or B1(X)

RX

H

H
τp

d̂

-�

Hc

-�

d̂

d̂ ≤ d̂ ≤ M d̂

...goals

To take the results where (I think!) they
belong i.e. to the context of C(K) and
RK spaces endowed with τp ;

To quantify some other classical results
about compactness in C(X ) or B1(X ).

tools

new reading of the classical;

for C(X ) we use double limits used by
Grothendieck;

for B1(X ) we use the notions of
fragmentability and σ -fragmentability of
functions.
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Theorem

Let Y be a normal space a. If
f ∈ RY is bounded, then

d(f ,Cb(Y )) =
1

2
osc(f ) .

a[osc(f ) = supx∈Y osc(f ,x)]
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x0

6

?

1
2 osc(f)

osc(f)

6

?

Y = [0, 1]

f
[

]

[

)

g

h

1 It is easy to check that
d(f ,Cb(Y ))≥ osc(f )/2.

2 For x ∈ Y , Ux family of neighb.

osc(f ) = inf
U∈Ux

sup
y ,z∈U

(
f (y)− f (z)

)
≥ inf

U∈Ux

sup
y∈U

f (y)− sup
U∈Ux

inf
z∈U

f (z)

3

f2(x) := sup
U∈Ux

inf
z∈U

f (z) +
osc(f )

2

≥ inf
U∈Ux

sup
y∈U
−osc(f )

2
=: f1(x)

4 Squeeze h between f2 and f1 and
d(f ,Cb(Y )) = ‖f −h‖∞ = osc(f )/2.
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y ,z∈U

(
f (y)− f (z)

)
≥ inf

U∈Ux

sup
y∈U

f (y)− sup
U∈Ux

inf
z∈U

f (z)

3

f2(x) := sup
U∈Ux

inf
z∈U

f (z) +
osc(f )

2

≥ inf
U∈Ux

sup
y∈U
−osc(f )

2
=: f1(x)

4 Squeeze h between f2 and f1 and
d(f ,Cb(Y )) = ‖f −h‖∞ = osc(f )/2.
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Quantitative Grothendieck charact. of τp-compactness

Theorem

If K is a compact topological space and H is a uniformly bounded
subset of C (K ), then

ck(H)≤ d̂(H
RK

,C (K ))≤ γ(H)≤ 2ck(H).

ck(H) := sup
(hn)n⊂H

d(
⋂

m∈N
{hn : n > m}R

K

,C (K ))

γ(H) := sup{| lim
n

lim
m

hm(xn)− lim
m

lim
n

hm(xn)| : (hm)⊂ H,(xn)⊂ K},
assuming the involved limits exist.

If H is relatively countably compact in C (K ) then ck(H) = 0
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Theorem
If K is a compact topological space and H is a uniformly bounded subset of C(K), then

ck(H)
(a)
≤ d̂(H

RK
,C(K))

(b)
≤ γ(H)

(c)
≤ 2ck(H).

(b)

in γ(H) replace sequences by nets.

Pick f ∈H
RK

and fix x ∈ K .
Take a net (xα )→ x in K such that

lim
α
|f (xα )− f (x)|= inf

U
sup
y∈U
|f (y)− f (x)|=: osc∗(f ,x);

Take a net in H (fβ )→ f in RK .

Assume (we can!) f (xα )→ z in R
We get

lim
α

lim
β

fβ (xα ) = lim
α

f (xα ) = z

lim
β

lim
α

fβ (xα ) = lim
β

fβ (x) = f (x)

Hence osc∗(f ,x) = limα |f (xα )− f (x)|= |z− f (x)| ≤ γ(H);
In particular osc(f ,x)≤ 2γ(H) for every x ∈ K ;

d(f ,C(K)))= 1
2 supx∈K osc(f ,x)≤ γ(H).
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Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RK we have that

γ(H) = γ(co(H)),

and as a consequence we obtain for H ⊂ C(K) that

d̂(co(H)
RK

),C(K))≤ 2d̂(H
RK

,C(K)) . (1)

and in the general case H ⊂ RK

d̂(co(H)
RK

),C(K))≤ 5d̂(H
RK

,C(K)) . (2)

1 d̂(co(H)
RK

),C(K))≤ γ(co(H)) = γ(H)≤ 2ck(H)≤ 2d̂(H
RK

,C(K))

2 When H ⊂RK , we approximate H by some set in C(K), then use (1) and
5 appears as a simple

5 = 2×2 + 1.
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Distances to spaces of affine continuous functions

Theorem

If K is compact convex
subset of a l.c.s. and
f ∈A (K ) then

d(f ,C (K )) = d(f ,A C (K )) .

h affine

cont.

f1 u. s. concave

f2 l. s. convex

f2

f1
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Distances to spaces of affine continuous functions

Theorem

If K is compact convex
subset of a l.c.s. and
f ∈A (K ) then

d(f ,C (K )) = d(f ,A C (K )) .

h affine

cont.

f1 u. s. concave

f2 l. s. convex

f2

f1

1 It is easy to check that
d(f ,A C (K))≥ osc(f )/2.

2 For x ∈ Y , Ux family of neighb.

δ > osc(f ) = inf
U∈Ux

sup
y ,z∈U

(
f (y)−f (z)

)
≥ inf

U∈Ux

sup
y∈U

f (y)− sup
U∈Ux

inf
z∈U

f (z)

3

f2(x) := sup
U∈Ux

inf
z∈U

f (z) +
δ

2

> inf
U∈Ux

sup
y∈U
−δ

2
=: f1(x)

4 Squeeze h between f2 and f1 and
‖f −h‖∞ ≤ δ/2.
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2 For x ∈ Y , Ux family of neighb.

δ > osc(f ) = inf
U∈Ux

sup
y ,z∈U

(
f (y)−f (z)

)
≥ inf

U∈Ux

sup
y∈U

f (y)− sup
U∈Ux

inf
z∈U

f (z)

3

f2(x) := sup
U∈Ux

inf
z∈U

f (z) +
δ

2

> inf
U∈Ux

sup
y∈U
−δ

2
=: f1(x)

4 Squeeze h between f2 and f1 and
‖f −h‖∞ ≤ δ/2.
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Corollary

Let X be a Banach space and let BX ∗ be
the closed unit ball in the dual X ∗ endowed
with the w∗-topology. Let i : X → X ∗∗ and
j : X ∗∗→ `∞(BX ∗) be the canonical
embedding. Then, for every x∗∗ ∈ X ∗∗ we
have:

d(x∗∗, i(X )) = d(j(x∗∗),C(BX ∗)) .
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Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:

γ(H) := sup{| lim
n

lim
m

fm(xn)− lim
m

lim
n

fm(xn)| : (fm)⊂ BE ∗ ,(xn)⊂ H},

assuming the involved limits exist,

ck(H) := sup
(hn)n⊂H

d(
⋂

m∈N
{hn : n > m}w ∗

,E),

k(H) := d̂(H
w ∗

,E) = sup
x∗∗∈H

w∗
d(x∗∗,E),

where the w∗-closures are taken in E ∗∗ and the distance d is the usual inf
distance for sets associated to the natural norm in E ∗∗.
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Relationship between measures of weak noncompactness

Theorem

For any bounded subset H of a Banach space E we have:

ck(H)≤ k(H)≤ γ(H)≤ 2ck(H)≤ 2k(H)

≤ 2ω(H),

γ(H) = γ(co(H))

and ω(H) = ω(co(H)).

For any x∗∗ ∈ H
w ∗

, there is a sequence (xn)n in H such that

‖x∗∗−y∗∗‖ ≤ γ(H)

for any cluster point y∗∗ of (xn)n in E ∗∗. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),γ(H)

and ω(H).

ω(H) := inf{ε > 0 : H ⊂ Kε + εBE and Kε ⊂ X is w -compact},

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From
k(co(H))≤ 2k(H) straightforwardly follows Krein-Smulyan theorem.
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Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of C(K).
Let us define

γK (H) := sup{| lim
n

lim
m

fm(xn)− lim
m

lim
n

fm(xn)| : (fm)⊂ H,(xn)⊂ K},

assuming the involved limits exist. Then we have

γK (H)≤ γ(H)≤ 2γK (H).

Theorem (C. Angosto, B.C.)

Let E and F be Banach spaces, T : E → F an operator and T ∗ : F ∗→ E ∗ its
adjoint. Then

γ(T (BE ))≤ γ(T ∗(BF ∗))≤ 2γ(T (BE )).
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Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence (Tn)n of operators
Tn : E → c0 such that

ω(T ∗n (B`1 )) = 1 and ω(T ∗∗n (B∗∗E ))≤ w(Tn(BE ))≤ 1

n
.

Note that this example says, in particular, that there are no constants m,M > 0 such that for any bounded operator
T : E → F we have

mω(T (BE ))≤ ω(T ∗(BF∗ ))≤Mω(T (BE )).

Corollary

γ and ω are not equivalent measures of weak noncompactness, namely there is
no N > 0 such that for any Banach space and any bounded set H ⊂ E we have

ω(H)≤ Nγ(H).
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The results for C (X )
If X is a topological space, (Z ,d) a metric space and H a relatively compact subset of the space (Z X ,τp ) we define

ck(H) := sup
(hn)n⊂H

d(
⋂

m∈N
{hn : n > m}Z

X
,C(X ,Z)).

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z ,d) a separable metric space and H a relatively compact subset of

the space (Z X ,τp ). Then, for any f ∈H
ZX

there exists a sequence (fn)n in H such that

sup
x∈X

d(g(x), f (x))
(a)
≤ 2ck(H) + 2d̂(H,C(X ,Z))

(b)
≤ 4ck(H)

for any cluster point g of (fn) in Z X .

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z ,d) a separable metric space and H a relatively compact subset of

the space (Z X ,τp ). Then

ck(H)
(a)
≤ d̂(H

ZX
,C(X ,Z))

(b)
≤ 3ck(H) + 2d̂(H,C(X ,Z))

(c)
≤ 5ck(H).

For the particular case ck(H) = 0 we obtain all known results about compactness in Cp (X ) spaces.
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The results for B1(X ). . .

C(X) or B1(X)

RX

H

H
τp

d̂

-�

Hc

-�

d̂

d̂ ≤ d̂ ≤ M d̂

1 If X topological space, (Z ,d) a metric and
f ∈ Z X and ε > 0;

2 f is ε-fragmented if for every non empty subset
F ⊂ X there exist an open subset U ⊂ X such
that U ∩F 6= /0 and diam(f (U ∩F ))≤ ε;

Definition

If X topological space, (Z ,d) a metric and f ∈ Z X .
We define:

frag(f ) := inf{ε > 0 : f is ε-fragmented}
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Quantitative version of a Rosenthal’s result

Theorem (C. Angosto, I. Namioka and B.C.)

If X is a complete metric space, E a Banach space and f ∈ E X then

1

2
frag(f )≤ d(f ,B1(X ,E))≤ frag(f ).

In the particular case E = R we precisely have

d(f ,B1(X )) =
1

2
frag(f ).

Theorem (C. Angosto, I. Namioka and B.C.)

Let X be a Polish space, E a Banach space and H a τp-relatively compact
subset of E X . Then

ck(H)≤ d̂(H
E X

,B1(X ,E))≤ 2ck(H).

In the particular case when E = R we have

d̂(H
RX

,B1(X )) = ck(H).
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Distances to spaces of measurable functions

(Ω,Σ,µ) is a complete probability space and (E ,‖ ‖) is a Banach space.

Σ+ = {B ∈Σ : µ(B) > 0} and Σ+
A = {B ∈Σ+ : B ⊂ A}.

M(µ,E) strongly measurable functions from Ω to E .

Index of strong measurability

Given f ∈ E Ω, we define

meas(f ) := inf{ε > 0 : ∀A ∈Σ+,∃B ∈Σ+
A such that osc(f |B ) < ε}

Proposition

Let f ∈ E Ω. Then:

d(f ,M(µ;E))≤meas(f )≤ 2d(f ;M(µ;X )).

Moreover, if E = R, then

d(f ,M(µ;X )) =
1

2
meas(f ).
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José Antonio Prado Bassas
Victoria Mart́ın Márquez



WE LOOK FORWARD TO THE
IV INTERNATIONAL COURSE OF
MATHEMATICAL ANALYSIS IN
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ANDALUCÍA (ALMERIA)

1



WE LOOK FORWARD TO THE
IV INTERNATIONAL COURSE OF
MATHEMATICAL ANALYSIS IN
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ANDALUCÍA (ALMERIA)

1



WE LOOK FORWARD TO THE
IV INTERNATIONAL COURSE OF
MATHEMATICAL ANALYSIS IN
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ANDALUCÍA (ALMERIA)

1



WE LOOK FORWARD TO THE
IV INTERNATIONAL COURSE OF
MATHEMATICAL ANALYSIS IN
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