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The starting point. .. »List  «Detais

@ M. Fabian, P. Hajek, V. Montesinos, and V. Zizler.
A quantitativeversion of Krein’ heorem
Rev. MWELNEIL)

@ A.S. C  Let E be a Banach space and let H C E be a bounded
An ext  subset of E. Then

Rev. d(co(H), E) < 2d(H, E)
Co ) —_ 7 7
@ A.S. (
Conve»
Math. @ closures are weak*-closures taken in the bidual E**;

@ d(A,E):=sup{d(a,E):ac A} for AC E**;

@ d(A,E)=0iff AC E. Hence the inequality implies
Krein's theorem (if H is relatively weakly compact then
co(H) is weakly compact.)
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The starting point. .. »List  «Detais

@ M. Fabian, P. Hajek, V. Montesinos, and V. Zizler.
A quantitative version of Krein’s Theorem..
Rev. Mat. Iberoamericana 21 (2005), no. 1, 237-248..

@ A. S. Granero.

Rev. M @ Let E be a Banach space and let H C E** be a
@ A.S. G bounded subset of E**. Then

Convex S — ~

Math. / d(co(H),E) <5d(H,E),

@ Some of the constant involved are sharp.
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The starting point. .. our goals

..our goal

...goals

@ To take the results where (I think!) they
belong i.e. to the context of C(K) and
RK spaces endowed with Tp;

H” @ To quantify some other classical results
about compactness in C(X) or B (X).

tools

@ new reading of the classical,

@ for C(X) we use double limits used by
DU Grothendieck;
RX Cod

@ for B1(X) we use the notions of
fragmentability and o-fragmentability of
functions.
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Distances vs. oscillations

Let Y be a normal space ?. If
f eRY is bounded, then

d(f,Cp(Y)) = %osc(f).

d[osc(f) = supyey osc(f,x)]
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Distances vs.oscillations

@ It is easy to check that
d(f,Cp(Y)) > osc(f)/2.

Let Y be a normal space. If
f e RY is bounded, then

d(F, Cy(Y)) = %osc(f).
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The results

Distances vs.oscillations

@ It is easy to check that
d(f,Cp(Y)) > osc(f)/2.

Let Y be a normal space. If . .
fEeRY is bounded, then @ For xe Y, % family of neighb.

d(F.Co(Y)) = %osc(f). osc(f) = Uig(];/xy?zuepu (fly)—f(2))

> inf sup f(y)— sup inf f(z
_UGW/xyeB (y) Ueﬂ/p/xzeU ( )
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The results

Distances vs.oscillations

@ It is easy to check that
d(f,Cp(Y)) > osc(f)/2.

Let Y be a normal space. If . .
fEeRY is bounded, then @ For xe Y, % family of neighb.

osc(f) = |nf sup (f(y)—f(2))

1
d(f,Cp(Y)) = Eosc(f). UE% y zeU
> inf supf(y)— sup inf f(z)
Ue. yeU Ue, z€U
o
fr(x):= sup inf f(z)+osc(f)
Uews, 2€U 2
> inf supfosc(f) =:fi(x)
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The results

Distances vs.oscillations

@ It is easy to check that
ot Y b l p d(f,Cp(Y)) > osc(f)/2.

et e a normal space. . ]
feRY is bounded fhen @ For xe Y, % family of neighb.

1 _
d(f,Cp(Y)) = Eosc(f). osc(f) = U'”f szuepu(f(y) f(2))
> inf supf(y)— sup inf f(z)

() = (@) v 2 h@) Ve yeu vew, 2€U

. f21. 5. 0
e f2(x) := sup inf f(z)+osc(f)
ve, z€U 2

> inf supfosc(f) =:f1(x)
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The results

Distances vs.oscillations

@ It is easy to check that
ot Y b l p d(f,Cp(Y)) > osc(f)/2.

et e a normal space. . ]
feRY is bounded fhen @ For xe Y, % family of neighb.

1 _
d(f,Cp(Y)) = Eosc(f). osc(f) = U'”f szuepu(f(y) f(2))
> inf supf(y)— sup inf f(z
e U el ) Sup I (2)
. f21. 5. 0
et fr(x):= sup inf f(z)+osc(f)
e, z€U 2
> inf supfosc(f) =:f1(x)

\[W"’{lrr\ v < A}
. @ Squeeze h between f; and f; and
d(f,Co(Y)) = ||f = hl| = 05c(F) /2.
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Quantitative Grothendieck charact. of 7,-compactness

If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).
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Quantitative Grothendieck charact. of 7,-compactness

If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).

ck(H):= sup d([) {hn:n> m}RK,C(K))
(hn)nCH  menN
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Quantitative Grothendieck charact. of 7,-compactness

If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).

K
ck(H):= sup d(() {h,,:n>m}]R ,C(K))
(hn)aCH  meN

Y(H) :=sup{| Iirr7n|inr7n hm(xn) — Iimmlifr7n hm(xn)| : (hm) C H,(xn) C K},

assuming the involved limits exist.
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Quantitative Grothendieck charact. of 7,-compactness

If K is a compact topological space and H is a uniformly bounded
subset of C(K), then

ck(H) < d(H™, C(K)) < ¥(H) < 2ck(H).

K
ck(H):= sup d(() {h,,:n>m}]R ,C(K))
(hn)aCH  meN

Y(H) := sup{|limlim hp(xn) — limlim hy(x4)| : (hm) C H,(x,) C K},
assuming the involved limits exist.

If H is relatively countably compact in C(K) then ck(H) =0 |
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ity 2@ ey v D 2ekm).
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@ in y(H) replace sequences by nets.

(b)
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

ity 2@ ey v D 2ekm).

@ in y(H) replace sequences by nets.

(b)

) rK )
@ Pick feH andfix xeK.
@ Take a net (xg) — x in K such that

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

ity 2@ ey v D 2ekm).

@ in y(H) replace sequences by nets.

) rK )
Pick fe H and fix x € K.
Take a net (xg) — x in K such that

(b)

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

ity 2@ ey v D 2ekm).

@ in y(H) replace sequences by nets.

) rK )
Pick fe H and fix x € K.
Take a net (xg) — x in K such that

(b)

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
@ Assume (we can!) f(xg) —zin R
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(a) K

ity 2@ ey v D 2ekm).

(b) in y(H) replace sequences by nets.
Pick f € A" and fix x € K.
Take a net (xg) — x in K such that

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
Assume (we can!) f(xq) — z in R
We get

Ii&nlilr?fﬁ(xa) = Ii&nf(xa) =z

Iilgnli&n fﬁ(xa) = Ii/gn fﬁ(x) = f(x)
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(a)

k(H) 2 e

. C(K)) (2 ¥(H) (g 2ck(H).

in y(H) replace sequences by nets.

(b) . rK )
Pick fe H and fix x € K.
Take a net (xg) — x in K such that

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
Assume (we can!) f(xq) — z in R
We get

limlimfg(xg) =limf(xg) =2z
i (5a) = fip fxe)
Iilgnligpfﬁ(xa):Ii/gnfﬁ(x):f(x)

@ Hence osc*(f,x) = limg |f(xo) — f(x)| = |z — f(x)| < Y(H);

B. Cascales Compactness+Distances



C(K) spaces: a taste for simple things
The results Applications to Banach spaces
Other applications and extensions

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(a)

k(H) 2 e

. C(K)) (2 ¥(H) (g 2ck(H).

in y(H) replace sequences by nets.

) rK )
Pick fe H and fix x € K.
Take a net (xg) — x in K such that

(b)

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
Assume (we can!) f(xq) — z in R
We get

limlimfg(xg) =limf(xg) =2z
i (5a) = fip fxe)
Iilgnligpfﬁ(xa):Ii/gnfﬁ(x):f(x)

@ Hence osc*(f,x) = limg |f(xq) — f(x)| = |z — f(x)| < Y(H);
@ In particular osc(f,x) < 2y(H) for every x € K;
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(a)

k(H) 2 e

. C(K)) (2 ¥(H) (g 2ck(H).

in y(H) replace sequences by nets.

) rK )
Pick fe H and fix x € K.
Take a net (x¢) — x in K such that

(b)

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
Assume (we can!) f(xq) — z in R
We get

Ii&nlilr?fﬁ(xa) = Ii&nf(xa) =z

Iilgnli&n fﬁ(xa) = Ii/gn fﬁ(x) = f(x)

7 Y =1[0,1]

Hence osc*(f,x) = limg |f(xq) — f(x)| = |z — f(x)| < ¥(H);
In particular osc(f,x) < 2y(H) for every x € K;
@ d(f,C(K)))= 3 supxek osc(f,x)< ¥(H).
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If K is a compact topological space and H is a uniformly bounded subset of C(K), then

ity 2@ ey v D 2ekm).

@ in y(H) replace sequences by nets.

__rK
Pick f e A" and fix x € K.
Take a net (x¢) — x in K such that

(b)

Ii&n|f(xa)— f(x)| = irbfsup [f(y)— f(x)| =: osc*(f,x);
yeU

@ Takeanetin H (f3) —fin RK.
Assume (we can!) f(xq) — z in R
We get

Ii&nlilr?fﬁ(xa) = Ii&nf(xa) =z

Iilgnli&n fﬁ(xa) = Ii/gn fﬁ(x) = f(x)

7 Y =1[0,1]

Hence osc*(f,x) = limg |f(xq) — f(x)| = |z — f(x)| < ¥(H);
In particular osc(f,x) < 2y(H) for every x € K;
® d(F,C(K)))= b supyerosc(F.x)< 1(H).
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Other applications and extensions

Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RK we have that

Y(H) = v(co(H)),
and as a consequence we obtain for H C C(K) that
" RK ~ —RK
d(co(H) ), C(K)) <2d(H ", C(K)). (1)

and in the general case H ¢ RK

d(co(A)" ). C(K)) < 5A(H"", C(K)). (2)
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Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RK we have that

Y(H) = v(co(H)),
and as a consequence we obtain for H C C(K) that
" RK ~ —RK
d(co(H) ), C(K)) <2d(H ", C(K)). (1)

and in the general case H ¢ RK

d(co(A)" ). C(K)) < 5A(H"", C(K)). (2)

© A(o(H)" ). C(K)) < Heo(H)) = ¥(H) < 2ck(H) < 24(H™" . C(K))
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Theorem

If K is a compact topological space and H be a uniformly bounded subset and
a uniformly bounded subset H of RK we have that

Y(H) = v(co(H)),

and as a consequence we obtain for H C C(K) that

d(eo(A)" ), C(K)) < 2d(H™",C(K)). (1)

and in the general case H ¢ RK

d(co(A)" ). C(K)) < 5A(H"", C(K)). (2)

© Aco(A)"). C(K)) < rlco(H)) = ¥(H) < 2ck(H) < 24(H" . C(K))
@ When H C RX, we approximate H by some set in C(K), then use (1) and

5 appears as a simple
5=2x2+1.
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Distances to spaces of affine continuous functions

If K is compact convex
subset of a l.c.s. and
f € o/ (K) then

d(f,C(K))=d(f,«(K)).
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Distances to spaces of affine continuous functions

. @ It is easy to check that
If K is compact convex d(F, 7 C(K)) > osc(F)/2.

subset of a l.c.s. and
f € o/ (K) then

d(f,C(K))=d(f,«(K)).
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex ¢ S
subset of a l.c.s. and d(f,/" (K)) = osc(f) /2.
f e o (K) then @ For x e Y, % family of neighb.
— c d>osc(f)= inf s f(y)—f
d(f,C(K))=d(f, (K)). (f)= jnf xyz“epu( (v)—f(2))

> inf supf(y)— sup |nf f(z)
Uet yeu Ue, z
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex ¢ S
subset of a l.c.s. and d(f,/" (K)) = osc(f) /2.
f e o (K) then @ For x e Y, % family of neighb.
— c d>osc(f)= inf s f(y)—f
d(f,C(K))=d(f, (K)). (f)= jnf xyz“epu( (v)—f(2))

> inf supf(y)— sup |nf f(z)
Uet yeu Ue, z

f2(x) := sup inf f(z)—i—é
Uew, z€U

B
> inf sup—— =:fi
unh, sup =3 = Al
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex ¢
d(f,«“(K)) > f)/2.

subset of a l.c.s. and (F,/"(K)) 2 osc(f)/
f e o (K) then @ For x e Y, % family of neighb.

_ c 0 >osc(f)= inf sup (f(y)—f(z
d(f,C(K))=d(f, o/ (K)). (F)= jof, sup (F()=1(2))

> inf supf(y)— sup |nf f(z)
fol s, comex U ycu Ue, 2

é
f2(x) := sup inf f(z)—i——
A h affine Ue, z€U

/ 1)
cont,

> inf —— =:fi
/‘—\ Ulg% jZB 2 1(x)

fi . s. concave
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Distances to spaces of affine continuous functions

@ It is easy to check that

If K is compact convex ¢
d(f,«“(K)) > f)/2.

subset of a l.c.s. and (F,/"(K)) 2 osc(f)/
f e o (K) then @ For x e Y, % family of neighb.

_ c 0 >osc(f)= inf sup (f(y)—f(z
d(f,C(K))=d(f, o/ (K)). (F)= jof, sup (F()=1(2))

> inf supf(y)— sup |nf f(z)
fol s, comex U ycu Ue, 2

é
f2(x) := sup inf f(z)—i——
A h affine Ue, z€U

/ 1)
cont,

> inf —— =:fi
/‘—\ Ulg% jZB 2 1(x)

@ Squeeze h between f; and f; and
Jiu s coneave If —hlle < 8/2.
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Distances to spaces of affine continuous functions

If K is compact convex
subset of a l.c.s. and
f € o/ (K) then

Corollary

d(f,C(K))=d(f,«(K)).

Let X be a Banach space and let Bx: be
the closed unit ball in the dual X* endowed
fal 5. convex with the w*-topology. Let i : X — X** and
J: X** — £(Bx+) be the canonical
embedding. Then, for every x** € X** we
have:

fa h affine

/ d(x™,i(X)) = d(i(x™), C(Bx-)).

fi . s. concave
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Measures of weak noncompactness

Given a bounded subset H of a Banach space E we define:

Y(H) :=sup{| IiqunlirT fm(xn) — Iirrmlirrp fm(xn)| : (fm) C B+, (xn) C H},
assuming the involved limits exist,

ck(H):= sup d( h,:n>m
(H) (h)p mQN{ >m)" E),

k(H):=d(H" ,E)= sup _d(x",E),
x**EH
where the w*-closures are taken in E** and the distance d is the usual inf
distance for sets associated to the natural norm in E**.
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) < 2k(H)
Y(H) = ¥(co(H))
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < ¥(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),v(H)
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) < 2k(H)
Y(H) = ¥(co(H))
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < ¥(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),v(H)

o(H):=inf{e >0: HC Ke +€Bg and Ke C X is w-compact}, J
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) <2k(H) <2w(H),
Y(H) = y(co(H)) and o(H) = o(co(H)).
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < v(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),y(H) and o(H).

o(H):=inf{e >0: HC Ke +€Bg and Ke C X is w-compact}, J
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Relationship between measures of weak noncompactness

For any bounded subset H of a Banach space E we have:
ck(H) < k(H) < y(H) <2ck(H) <2k(H) <2w(H),
Y(H) = y(co(H)) and o(H) = o(co(H)).
For any x** € PW*, there is a sequence (xn)n in H such that
X = y™ | < v(H)

for any cluster point y** of (xn)n in E**. Furthermore, H is weakly relatively
compact in E if, and only if, it is zero one (equivalently all) of the numbers
ck(H),k(H),y(H) and o(H).

o(H):=inf{e >0: HC Ke +€Bg and Ke C X is w-compact}, J
The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From
k(co(H)) < 2k(H) straightforwardly follows Krein-Smulyan theorem. J
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Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of C(K).
Let us define

Yx (H) := sup{| Ii,rjn Iinr7n fm(xn) — Ii,;nlign fm(xn)| : (fm) C H,(xn) C K},
assuming the involved limits exist. Then we have

Yk (H) < y(H) <2y (H).
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Other applications to Banach spaces

Theorem (C. Angosto, B.C.)

Let K be a compact space and let H be a uniformly bounded subset of C(K).
Let us define

Yx (H) := sup{| Ii,rjn Iinr7n fm(xn) — Ii,;nlign fm(xn)| : (fm) C H,(xn) C K},
assuming the involved limits exist. Then we have

Yk (H) < y(H) <2y (H).

Theorem (C. Angosto, B.C.)

Let E and F be Banach spaces, T : E — F an operator and T* : F* — E* jts
adjoint. Then

YT (BEg)) < U(T"(BF-)) < 2¢(T(Be)).
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Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence (T,), of operators
Th: E — cg such that

o(T,(Bp))=1 and  o(T,"(BE)) < w(Ta(Be)) <

1
n

Note that this example says, in particular, that there are no constants m, M > 0 such that for any bounded operator
T : E — F we have
mo(T(B)) < o(T*(Br+)) < Mo(T(Bg)).

Y and @ are not equivalent measures of weak noncompactness, namely there is
no N > 0 such that for any Banach space and any bounded set H C E we have

o(H) < Ny(H).
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The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘L'P) we define

ck(H):= sup d([) {h,,.n>m} C(X,2)).
(hn)nCH  menN

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,‘UP). Then, for any f € HZ there exists a sequence (f)n in H such that
(a) o (b)
sup d(g(x),f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in zX.

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,1,). Then

@ X (b) . ©
ck(H) < d(A*",C(X,2)) < 3ck(H)+2d(H,C(X,Z)) < 5ck(H).
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The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (ZX.‘CP) we define

ck(H):= sup d([) {h,,.n>m} C(X,2)).
(hn)nCH  menN

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of

_7X
the space (ZX,‘UP). Then, for any f € HZ there exists a sequence (f)n in H such that
(a) o (b)
sup d(g(x),f(x)) < 2ck(H)+2d(H,C(X,Z)) < 4ck(H)
xeX

for any cluster point g of (f,) in zX.

Theorem (C. Angosto, B.C.)

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of
the space (ZX,1,). Then

@ X (b) . ©
ck(H) < d(A*",C(X,2)) < 3ck(H)+2d(H,C(X,Z)) < 5ck(H).

For the particular case ck(H) =0 we obtain all known results about compactness in Cp(X) spaces. )
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The results for By(X). ..

@ If X topological space, (Z,d) a metric and
fezX and & > 0;
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The results for By(X). ..

@ If X topological space, (Z,d) a metric and
fezX and e>0;
7 @ f is e-fragmented if for every non empty subset
PN F C X there exist an open subset U C X such
Cu @) that UNF #0 and diam(f(UNF)) < &;
cwanm |
RX 3 d 3
d <d<Mmd
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The results for By(X). ..

@ If X topological space, (Z,d) a metric and
fezX and & > 0;

@ f is e-fragmented if for every non empty subset
PN F C X there exist an open subset U C X such
Cu @) that UNF #0 and diam(f(UNF)) < &;

i Definition

C(X) or Bi(X)
‘ If X topological space, (Z,d) a metric and f € ZX.
R Cod We define:
d < d < Md frag(f) :=inf{e > 0: f is e-fragmented }
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Quantitative version of a Rosenthal’s result
Theorem (C. Angosto, |. Namioka and B.C.)

If X is a complete metric space, E a Banach space and f € EX then

~ frag(f) < d(F, Bi(X, E)) < frag(£).

In the particular case E =R we precisely have

d(f,Bi(X)) = %frag(f).
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Quantitative version of a Rosenthal’s result
Theorem (C. Angosto, |. Namioka and B.C.)

If X is a complete metric space, E a Banach space and f € EX then
1
Efrag(f) < d(f,B1(X,E)) < frag(f).

In the particular case E =R we precisely have
1
d(f,B1(X)) = Efrag(f).
Theorem (C. Angosto, |. Namioka and B.C.)

Let X be a Polish space, E a Banach space and H a tp-relatively compact
subset of EX. Then

ck(H) < d(AE, Bi(X, E)) < 2ck(H).

In the particular case when E =R we have

RX

d(H" ,Bi(X)) = ck(H).
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Quantitative version of a Rosenthal’s result

"

7T TN

’ A

B | ey

\ ¥

N o

a

C(X) or Bi(X) !

RX | (A[ |
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Distances to spaces of measurable functions

@ (Q,%,u) is a complete probability space and (E,|| ||) is a Banach space.
@ ¥f={BeX:u(B)>0}and I ={BeX:BCA}L
@ M(u, E) strongly measurable functions from € to E.
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Distances to spaces of measurable functions

@ (Q,%,u) is a complete probability space and (E,|| ||) is a Banach space.
@ ¥f={BeX:u(B)>0}and I ={BeX:BCA}L
@ M(u, E) strongly measurable functions from € to E.

Index of strong measurability

Given f € E, we define

meas(f) :=inf{e > 0: VA€ £ 3B € T} such that osc(f|g) < &}
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Distances to spaces of measurable functions

@ (Q,%,u) is a complete probability space and (E,|| ||) is a Banach space.
@ ¥f={BeX:u(B)>0}and I ={BeX:BCA}L
@ M(u, E) strongly measurable functions from € to E.

Index of strong measurability

Given f € E©, we define

meas(f) :=inf{e > 0: VA€ £ 3B € T} such that osc(f|g) < &}

Proposition

Let f € EQ. Then:
d(f,M(u; E)) < meas(f) < 2d(f; M(u; X)).

Moreover, if E =R, then

d(F, M(u: X)) = %meas(f).
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